I Buderus Warmarbeitsstahl 2343 ISO-B MOD

	С	Si	Mn	Р	S	Cr	Mo	V
Richtanalyse	0,35	0,30	0,40	≤ 0,010	≤ 0,003	5,00	1,35	0,50
Chem. Zusammensetzung gemäß SEL	0,33- 0,41	0,80- 1,20	0,25- 0,50	≤ 0,030	≤ 0,020	4,80- 5,50	1,10– 1,50	0,30- 0,50

Angaben in Massen-%

Stahl-Eisen-Liste (SEL)	X 36 CrMoV 5-1 (1.2340)
DIN EN ISO 4957	~ X 37 CrMoV 5-1
AFNOR	Z 38 CDV 5
AISI	~ H 11 mod.
BS	~ BH 11

Stahltyp

Dieser, speziell für die Aluminium- und Magnesiumdruckgießindustrie entwickelte Warmarbeitsstahl zeichnet sich durch besonders gute Zähigkeitseigenschaften aus. Die Konzeption dieses Stahles basiert auf einer Analysenmodifikation zur Unterdrückung der Anlassversprödung sowie besonderen sekundärmetallurgischen Maßnahmen, die zur ISO-B Güte führen. Damit sind Grundvoraussetzungen für hohe Werkzeugstandmengen bei der Druckgieß- und Strangpressverarbeitung gegeben. Durch gezielte Wärmebehandlungsschritte nach dem Schmiedeprozess, wie z. B. die Feinstrukturbehandlung, werden die maßgeblichen Eigenschaften des Stahles wie:

- I Feinstrukturgefüge
- I richtungsunabhängige Zähigkeit in allen Prüfpositionen
- I Temperaturwechselbeständigkeit

sicher erreicht. Die Praxiserfahrungen zeigen, dass mit diesem Werkstoff gegenüber den herkömmlichen Standardgüten 2343 ISO-B und 2344 ISO-B deutlich bessere Werkzeugstandzeiten erzielt werden können.

Anwendung

Hochbeanspruchte Druckgießformen und -einsätze mit hohen Standmengenerwartungen. Werkzeuge zum Rohr- und Strangpressen wie Matrizenhalter, Kammer- und Brückenwerkzeuge, Innen- und Zwischenbüchsen. Abrasiv beanspruchte Kunststoffformen mit Werkzeughärten bis 50 HRC, ggf. in Verbindung mit einer Oberflächenbeschichtung.

Lieferzustand

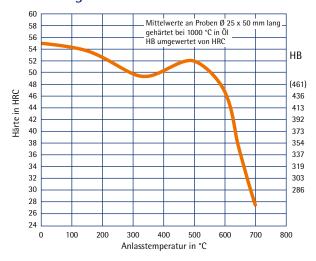
Geglüht auf max. 229 HB

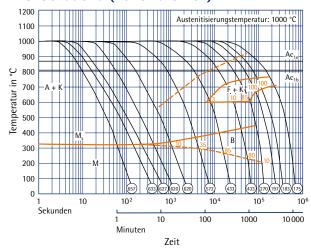
Auf Wunsch vergütet auf Kundenvorschrift

Physikalische Eigenschaften (Anhaltswerte)

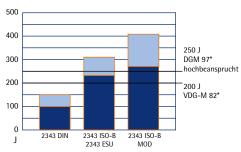
Wärmeausdehnungs-	20-100 °C	20-200 °C	20-300 °C	20-500 °C
koeffizient (10 ⁻⁶ /K)	9,9	11,5	12,1	12,8
Wärmeleitfähigkeit	20 °C	350 °C	700 °C	
(W/mK)	23,0	26,0	29,5	
E-Modul	20 °C	250 °C	500 °C	
(GPa)	210	195	172	

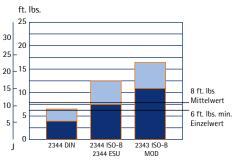
Warmstreckgrenzen


Zustand vergütet	0,2 % Dehngrenze in MPa bei Temperatur			
	450 °C	500 °C	550 °C	600 °C
~ 1570 MPa	1050	960	690	430
~ 1370 MPa	900	830	650	390
~ 1230 MPa	800	720	500	310


I 2343 ISO-B MOD

Wärmebehandlung		
Spannungsarmglühen	Temperatur: Dauer: Abkühlung:	ca. 650 °C in geglühtem Zustand, in vergütetem Zustand ca. 30–50 °C unter der härtegebenden Anlasstemperatur 1 Std. pro 50 mm Wandstärke Ofen
Weichglühen	Temperatur: Dauer: Abkühlung:	820°C 1 Std. pro 25 mm Wandstärke Ofen
Härten	Temperatur: Dauer:	1000 °C 30 Sek. pro mm Wandstärke
Abschrecken		Geometrie- und dimensionsabhängig in Öl, Warmbad, Schutzgas, Vakuum oder Luft
Anlassen	Temperatur: Dauer: Abkühlung:	siehe Anlassdiagramm 1 Std. pro 25 mm Wandstärke Luft
Arbeitshärte	30-50 HRC	je nach Anwendungszweck


Anlassdiagramm


ZTU-Schaubild (kontinuierlich)

Mechanische Gütewerte

Vergleich der Schlagarbeit Vergütet auf 43–47 HRC Proben quer, 20°C

Vergleich der Kerbschlagarbeit gem. NADCA #207–03* (Charpy V) Vergütet auf 44–46 HRC Proben quer, 20°C

^{*} in der Bestellvorschrift angeben